Abstract

The optimization of soil sampling is very important in precision agriculture. The main aim of this study was to evaluate the relationships between selected spectral indices (NDWI—normalized difference water index and NDVI—normalized difference vegetation index) and apparent soil electrical conductivity (EC) with soil nutrient content (phosphorus, potassium, and magnesium) and pH. Moreover, the usefulness of these variables for the delineation of within-field management zones was assessed. The study was conducted in 2021 in central Poland at three maize fields with a total area approximately 100 ha. The analyses were performed based on 47 management zones, which were used for soil sampling. Significant positive correlations were observed between the NDVI for the bare soil and all the studied nutrient contents in the soil and pH. A very strong positive correlation was observed between the soil EC and the potassium content and a moderate correlation was found with the magnesium content. A multiple-regression analysis proved that the soil nutrient content, especially potassium and phosphorus, was strongly related to the EC and NDVI. The novelty of this study is that it proves the relationships between soil and the crop attributes, EC and NDVI, which can be measured at field scale relatively simply, and the crucial soil nutrients, phosphorus and potassium. This allows the results to be used for optimized variable-rate fertilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call