Abstract

Analysis of physical evidence is typically a deciding factor in forensic casework by establishing what transpired at a scene or who was involved. Forensic geoscience is an emerging multi-disciplinary science that can offer significant benefits to forensic investigations. Soil is a powerful, nearly 'ideal' contact trace evidence, as it is highly individualistic, easy to characterise, has a high transfer and retention probability, and is often overlooked in attempts to conceal evidence. However, many real-life cases encounter close proximity soil samples or soils with low inorganic content, which cannot be easily discriminated based on current physical and chemical analysis techniques. The capability to improve forensic soil discrimination, and identify key indicator taxa from soil using the organic fraction is currently lacking. The development of new DNA sequencing technologies offers the ability to generate detailed genetic profiles from soils and enhance current forensic soil analyses. Here, we discuss the use of DNA metabarcoding combined with high-throughput sequencing (HTS) technology to distinguish between soils from different locations in a forensic context. Specifically, we provide recommendations for best practice, outline the potential limitations encountered in a forensic context and describe the future directions required to integrate soil DNA analysis into casework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.