Abstract

Global warming causes topsoil temperatures to increase, which potentially leads to maize yield loss. We explored the effects of soil warming/cooling on root-shoot growth and maize grain yields by performing pot experiments with a heat-sensitive maize hybrid (HS208) and a normal maize hybrid (SD609) in warm temperate climate in 2019 and 2020. Our results reveal, for the first time, differences in root characteristics, leaf photosynthetic physiology, and yield responses to soil warming and cooling between normal and heat-sensitive maize varieties under a warm temperate climate. Soil warming (+2 and 4 °C) inhibited whole root growth by decreasing root length, volume, and dry mass weight, which indirectly reduced leaf photosynthetic capacity and decreased grain yield/plant by 15.10–24.10% versus control plants exposed to ambient temperature. Soil cooling (−2 °C) promoted root growth and leaf photosynthesis, and significantly increased grain yield of HS208 by 12.61%, although no significant change was found with SD609. It can be seen that under unfavorable conditions of global warming, selection of excellent stress-resistant hybrids plays an important role in alleviating the soil heat stress of maize in warm temperate climate regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.