Abstract
Biopolymer–soil technology is currently recognized as an environmentally friendly soil improvement method for geotechnical engineering practices. However, concerns exist regarding biopolymer fine-soil applications because the performance of biopolymers is based on an electrical interaction with clay or a pore fluid. Thus, the effect of water content and pore-fluid chemistry on biopolymer behavior in soil must first be clarified in terms of biopolymer applications. In this study, the liquid limits of xanthan gum biopolymer–treated clay–sand mixtures (clayey silt, kaolinite, montmorillonite, and sand) were obtained using three chemically distinct pore fluids (deionized water, 2 mol/L NaCl brine, and kerosene). Xanthan gum has contrary effects to the soil consistency, where the liquid limit can decrease via xanthan gum–induced particle aggregation or increase due to xanthan gum hydrogel formation. The clay-mineral type governed the xanthan gum behavior in the deionized water, while the pore-fluid chemistry governed the xanthan gum behavior in the brine and the kerosene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.