Abstract

Soil CO2 and O2 cycles are coupled in some processes (e.g., respiration) but uncoupled in others (e.g., silicate weathering). One benchmark for interpreting soil biogeochemical processes affected by soil pCO2 and pO2 is to calculate the apparent respiratory quotient (ARQ). When aerobic respiration and diffusion are the dominant controls on gas concentrations, ARQ equals 1; ARQ deviates from 1 when other processes dominate soil CO2 and O2 chemistry. Here, we used ARQ to understand lithologic, hillslope, and seasonal controls on soil gases at the Susquehanna Shale Hills Critical Zone Observatory in central Pennsylvania. We measured soil pCO2 and pO2 at three depths from the soil surface to bedrock across catenas in one shale and one sandstone watershed over three growing seasons. We found that both parent lithology and hillslope position significantly affect soil gas concentrations and ARQ. Soil pCO2 was highest (>5%) and pO2 was lowest (<16%) in the valley floors. Controlling for depth, pCO2 was higher and pO2 was lower across all sites in the sandstone watershed. We attribute this pattern to higher macroporosity in sandstone lithologies, which results in greater root respiration at depth. We recorded seasonal variation in ARQ at all sites, with ARQ rising above 1 during July through September, and dipping below 1 in the early spring. We hypothesize that this seasonal fluctuation arises from anaerobic respiration in reducing microsites July through September when the soils are wet and demand for O2 is high, followed by oxidation of reduced species when the soils drain and re‐oxygenate. We estimate that this anaerobic respiration in microsites contributes 36 g C m−2 yr−1 to the soil C flux. Our results provide evidence for a conceptual model of metal cycling in temperate watersheds and point to the importance of anaerobic respiration to the carbon flux from forest soils.Core Ideas Hillslope position and lithology affect soil CO2 and O2 in humid temperate forests. The ratio of CO2 and O2 (ARQ) fluctuates over the growing season. The ARQ fluctuations indicate seasonal metal redox cycling at all hillslope positions. Anaerobic respiration is important to soil CO2 flux during the late growing season.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.