Abstract

From November 1998 to October 2000, measurements of soil respiration were performed on the Spanish plateau for two patches of non-irrigated barley, one managed with conventional tillage (CT) and the other with reduced tillage (RT). Soil CO 2 flux showed seasonal variation on both patches, with an increase from March to October, peaking in May, and a decrease during the winter period by a factor of around 2. The mean value for both combined years was 2.03 and 1.70 μ mol m −2 s −1, in the CT and RT patches, respectively. In order to analyse the influence of RT on soil CO 2 flux, two tests were performed. The first one was the Kruskal–Wallis test to compare whether the differences between the medians in both patches were statistically significant. The results obtained revealed statistically significant differences during the second year, at a 85% and 95% significance level, use being made of annual data and that recorded during the period of maximum interest, March–October, respectively. The decrease in soil respiration in the RT patch was around 24%. The second test was aimed at describing and comparing the influence of soil temperature on soil CO 2 flux. By using the data of both patches recorded during the first year, an empirical equation on 10-cm soil temperature was fitted and tested on the data corresponding to the second year in each of the patches. Then, a comparison between the medians of the differences between the estimated and observed values was again performed by means of the Kruskal–Wallis test. The over-prediction of the model in the RT patch, statistically significant at a 90% significance level, was roughly 23%, confirming again the decrease in soil respiration one year after this agricultural management practice had been implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.