Abstract

Background: In order to support livelihoods, enhance food security, restore ecosystem services, and reduce pressure on forests, soil fertility can be improved by utilizing alternative land-use systems, such as agroforestry. Methods: The present study was conducted to investigate the effect of different agroforestry systems on soil chemical properties and nutrient availability (macro and micro) during different seasons in Hisar, Haryana. Different systems include Poplar (Populus deltoides), Eucalyptus (Eucalyptus tereticornis), Melia (Melia composita), Shisham (Dalbergia sissoo) based agroforestry system (Cowpea-Wheat) and sole cropping of Cowpea-Wheat (as control). Soil samples were collected from 0-15 and 15-30 cm of soil depth during five seasons i.e., winter, spring, summer, rainy and autumn. Result: Soil EC, SOC and available macronutrients and micronutrients were significantly affected by the depth of sampling, systems and seasons while soil pH was not significantly affected by seasons. Lower soil pH and EC was observed from agroforestry systems as compared to sole cropping. Soil Organic Carbon, availability of N, P, K and S was significantly higher under tree based systems as compared to control. Maximum DTPA extractable Mn, Zn and Cu was observed under poplar based system while highest DTPA extractable Fe was observed under Melia based system during both the years. Significantly higher SOC and nutrient availability was observed during autumn, rainy and spring seasons as compared to winter and summer seasons, while reverse trend was observed for soil pH and EC among the seasons. Soil Organic Carbon, availability of macro and micronutrients decreased with increase in soil depth. Overall, the soil chemical properties and nutrient status of soil were comparatively better under tree based systems than sole cropping of Cowpea-Wheat.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call