Abstract

The Cerrado-Amazonas ecotone occupies 4.85% of the Brazilian territory, with almost 60% of its area deforested. Inadequate soil management practices cause changes in the physical, chemical and biological soil attributes. This study aimed to characterize soil chemistry in different management systems, identifying its efficiency. Ten areas were divided into two soil classes (Ultisol and Entisol quartzipsamment), each comprising a management system (1 - silvopastoral with 30% shade (SP30), 2 - silvopastoral with 60% shade (SP60), 3 - secondary forest, 4 - native forest, 5 – pasture conventional (CP)). The samples were collected at depths of 0-10, 10-20 and 20-40 cm. The chemical attributes of the soil analyzed were pH, P, K +, Ca2 +, Mg2 +, H + Al3 +, Al3 +, sum of bases (SB), effective cation exchange capacity (CEC), CEC at pH 7, saturation base (V%) and aluminum saturation (m%). The data were submitted to principal component analysis and analysis of variance and Tukey's test (p <0.05). There were minor changes in the attributes analyzed in the Entisol management systems, comparing the other systems with the reference system (native forest); however, SP30 was more suitable, as it increased the pH and the values of essential cations in the soil. In Ultisol, the SP60 and CP systems showed higher averages in the studied attributes, it is inferred that these systems have similar efficiency in land use, positioning them as the best systems studied in this soil class.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call