Abstract

Molecular assessment of the origin and transformation processes of soil organic matter (SOM) was carried out based on information obtained from 13C NMR and analytical pyrolysis of humic acids (HAs) in soils from wine-growing regions in Tenerife (Canary Islands, Spain). Principal component analysis, using as variables pyrolysis products, shows different soil groups defined by the molecular assemblages released from the corresponding HAs, characterized by the predominance of: i) plant biomacromolecules (lignin) in soils on pumice substrate, ii) heterocyclic N-compounds and methoxyl-lacking aromatic structures, iii) a substantial domain of alkyl compounds in cultivated soils with active C turnover and finally, iv) polysaccharide and protein-derived compounds in soils developed on amorphous gels. The proportions of the pyrolytic compounds from soil HAs were represented by an upgraded graphical-statistical method (3D Van Krevelen plot) that was used to compare the major SOM structural domains in the different soils. The above results coincide with those suggested by the 13C NMR analysis, and were associated to two groups of local land management practices, in terms of their intensity respectively favoring either the transformation of plant-inherited macromolecular precursors from vascular plants, or the humification of aliphatic precursors in the presence of specific mineralogical substrates controlling microbial degradation and humification processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call