Abstract

The carbon (C) sequestration potential of global soils are estimated between 0.4 and 1.2 Gt C year−1 or 5–15 % (1Pg = 1 × 105 g). The C emission is rising rapidly by 2.3% every year. If the emissions continue to rise, warming could reach the levels that are dangerous for the society, but it looks like global emissions might now be taking a different turn in the last few years. As we know the sustainability of agroecosystem largely depends on its C footprint as the soil organic carbon (SOC) stock; it is an indicator of soil health and quality and plays a key role to soil sustainability. At the same time, continuing unsustainable agricultural approaches under intensive farming have depleted most of the SOC pool of global agricultural lands. Still, the terrestrial ecosystem has enormous potential to store the atmospheric C for a considerable period of time. Therefore, promoting the cultivation of crops sustainably offers multiple advantages, e.g. augmenting crop and soil productivity, adapting climate change resilience, and high turnover of above- and below-ground biomass into the soil system, thus sequestering atmospheric C and dropping concentration of GHGs from the atmosphere. The continuous vegetation on soil surface ensures good soil health and soil C concentration at variable soil depth as per the specific crop. The C sequestration potential and the amount of organic C returned by crop plants rest on specific plant species, depending on the nature of growth, root morphology and physiology, leaf morphology, climatic conditions, soil texture, structure and aggregation, prevailing cropping system, and agronomic interventions during crop growth period. The above-ground plant biomass, e.g. plant leaves, branches, stem, foliage, fruits, wood, litter-fall, etc., and below-ground plant biomass, e.g. dead roots, released substances from root exudates, rhizospheric deposition, and plant-promoted microbial biomass C, directly contribute to the SOC buildup. Sustainable crop management practice that ensures the increased nitrogen (N) availability accelerates the C input in the soil ecosystem. Farming practices that improve nitrogen and water use efficiency (NUE and WUE) reduce soil disturbance and erosion, increase plant biomass, and together affect N availability and SOC stock. Conservation tillage together with surface residue retention and legume-based sensible crop rotation reduces soil disturbances, surface runoff, and erosion; increases N availability and SOC sequestration; increases soil sustainability by mixed cropping, intercropping, crop rotation, cover cropping, multiple cropping, and relay cropping; and generates and adds greater amount of qualitative plant biomass into the soil. The N addition, especially from bulky organic manure, green manures, leguminous crops, cover crops, biological N-fixing microbes, and farm and kitchen waste materials, is essential for agricultural productivity and SOC sequestration. The C sequestration benefits from addition of chemical nitrogenous fertilizers are compensated by the release of carbon dioxide (CO2) and nitrous oxide (N2O) during manufacturing, transportation, storage, and application of fertilizers. Therefore, approaching integrated nutrient management (INM) encompassing manures and other C-rich resources sustains soil health and increases N availability and SOC sequestration. Moreover, location-specific scientific research is needed to point out the best management practices that enhance NUE, maintain/improve soil health, boost crop production and SOC sequestration, and minimize greenhouse gas (GHG) release in the biosphere. In the view of above, in this chapter, quantifying the C sequestration potential with higher degree of confidence is required in agriculture management. The present book chapter is critically analyses the C sequestration potential of different soil and crop management practices under diverse ecological conditions for sustainable crop productivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.