Abstract

Effect of 19 years of different tillage (direct drilled vs. conventional tillage) and stubble management (stubble retained vs. burnt) on soil carbon fractions were studied in a red earth, an Oxic Paleustalf at Wagga Wagga, NSW. The changes in carbon fractions were related to observed changes in soil structural stability and nitrogen availability. Significant differences in total organic carbon (TOC) were detected to 0.20 m depth, but the largest differences existed in the top 0.05 m where a difference of 8.0 g/kg (equivalent to 5.2 t ha −1) was found between the extreme treatments (direct drilled/stubble retained (DD/SR) vs. conventional cultivation/stubble burnt (CC/SB)). Tillage had a much greater effect in reducing total carbon than stubble burning accounting for 80% of the total difference between the extreme treatments in 0–0.05 m layer. Tillage and stubble burning resulted in lower levels of different organic carbon fractions with tillage preferentially reducing the particulate organic carbon (POC) (>53 μm) (both free and associated POCs), whereas stubble burning reduced the incorporated organic carbon (<53 μm). We also found that tillage and stubble burning both significantly lowered the water stability of aggregate >2 mm, whereas stubble burning was related to the reduction of water stability of aggregates <50 μm. Furthermore, tillage was related to the decline in mineralisable nitrogen (MN) due to the loss of POC, especially the free POC fraction. POC was a more sensitive indicator of soil quality changes under different tillage and stubble management than TOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call