Abstract

In the last 40 years, large areas of the Mau forest, the largest contiguous tropical montane forest in East Africa, have been cleared for agriculture. To date, there are no empirical data on how this land use change affects carbon dioxide (CO2) fluxes from soil respiration and soil methane (CH4) fluxes. This study reports measured annual soil CO2 and CH4 fluxes from the native Mau forest and previously forested lands converted to smallholder grazing land, smallholder and commercial tea plantations and eucalyptus plantations. Fluxes were measured weekly from August 2015 to August 2016 using the static chamber method. Grazing lands had the highest (p = 0.028) cumulative respiratory CO2 fluxes (25.6 ± 2.9 Mg CO2–C ha−1 year−1), whereas lowest fluxes were observed in commercial tea plantations (5.6 ± 0.5 Mg CO2–C ha−1 year−1). Soil respiratory CO2 fluxes were positively correlated with soil pH, but negatively correlated with soil C:N ratio. Annual soil fluxes were explained by soil pH, bulk density and the interaction between soil pH and C:N ratio. Most soils were sinks for atmospheric CH4 across all land use types. Methane uptake was highest for native forest sites (− 3.08 ± 0.35 to − 5.84 ± 0.61 kg CH4–C ha−1 year−1) and for eucalyptus plantations (− 3.43 ± 0.19 kg CH4–C ha−1 year−1). Uptake decreased significantly with increasing land use intensity (smallholder tea plantations: − 1.42 ± 0.09 kg CH4–C ha−1 year−1, commercial tea plantations: − 1.44 ± 0.29 kg CH4–C ha−1 year−1). Soils of smallholder grazing lands had the lowest CH4 uptake rates (− 0.36 ± 0.25 kg CH4–C ha−1 year−1). Annual CH4 uptake was negatively correlated with mean annual soil water-filled pore space (p < 0.01) and bulk density (p = 0.003) and decreased with increasing soil inorganic NH4+ concentrations (p = 0.03). Annual soil CH4 can be explained by mainly soil water content and bulk density and these factors are related to gas diffusion. Our study shows that converting tropical montane forests to managed land use types affects soil CO2 and CH4 fluxes. Specifically, the CH4 sink strength in managed land use types of these montane tropical soils was reduced to less than half of the sink strength in the native forest. Soil respiratory CO2 fluxes were also altered by land use with grazing lands emitting 3–4 times more CO2 than the other land use types.

Highlights

  • Soil respiration is one of the dominant fluxes in the global carbon cycle (Adachi et al 2017)

  • Our study shows that converting tropical montane forests to managed land use types affects soil CO2 and CH4 fluxes

  • In all the other land use types we report soil respiration, in the grazing lands we did not remove the grass inside the chambers and the CO2 fluxes include soil respiration and plant respiration

Read more

Summary

Introduction

Soil respiration is one of the dominant fluxes in the global carbon cycle (Adachi et al 2017). In upland forest soils, soil conditions favour the activity and growth of methanotrophs and the methane oxidation process is dominant compared to production (Kravchenko 2017), as a result forests soils usually act as methane sinks. Soil tillage or animal trampling, typically associated with agriculture, can affect soil properties such as bulk density (Owuor et al 2018), which in turn reduces soil pore size and connectivity (Dexter 2004) and gas diffusivity. This reduction in diffusivity can cause lower CH4 uptake compared to soils of natural ecosystems (Jacinthe et al 2014). It has often been reported that the conversion of natural forests to managed land use types reduces soil methane uptake (Oertel et al 2016)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call