Abstract
The environmental sustainability of bioenergy cropping systems depends upon multiple factors such as crop selection, agricultural practices, and the management of carbon (C), nitrogen (N), and water resources. Perennial grasses, such as switchgrass (Panicum virgatum L.), show potential as a sustainable bioenergy source due to high yields on marginal lands with low fertilizer inputs and an extensive root system that may increase sequestration of C and N in subsurface soil horizons. We quantified the C and N stocks in roots, free particulate, and mineral-associated soil organic matter pools in a 4-year-old switchgrass system following conversion from row crop agriculture at the W.K. Kellogg Biological Station in southwest Michigan. Crops were fertilized with nitrogen at either 0, 84, or 196 kg N ha−1 and harvested either once or twice annually. Twice-annual harvesting caused a reduction of C and N stocks in the relatively labile roots and free-particulate organic matter pools. Nitrogen fertilizer significantly reduced total soil organic C and N stocks, particularly in the stable, mineral-associated C and N pools at depths greater than 15 cm. The largest total belowground C stocks in biomass and soil occurred in unfertilized plots with annual harvesting. These findings suggest that fertilization in switchgrass agriculture moderates the sequestration potential of the soil C pool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.