Abstract

Elevated CO2 and O3 alter tree quality and the quality of herbivore inputs, such as frass, to forest soil. Altered quality or quantity of herbivore inputs to the forest floor can have large impacts on below- ground processes. We collected green leaves and frass from whitemarked tussock moth caterpillars from aspen-birch stands at the Aspen Free Air CO2 Enrichment (FACE) site near Rhinelander, WI, USA. Small or large quantities of frass, greenfall, or a 1:1 ratio of frass and greenfall were added to microcosms for each FACE treatment (control, +CO2 ,+ O 3, +CO2+O3). We measured initial frass and greenfall quality, and recorded microbial respiration, and nitrate leaching over 40 days. Elevated carbon dioxide (eCO2) and tropospheric ozone (eO3) significantly altered the carbon, nitrogen, and condensed tannin content of insect frass and green leaves. Although FACE treatments affected input quality, they had minimal effect on microbial respiration and no effect on nitrogen leaching. In contrast, input quantity substantially influenced microbial respiration and nitrate leaching. Respiratory carbon loss and nitrate immobilization were nearly double in microcosms receiving large amounts of herbivore inputs than those receiving no herbivore inputs. Small amounts of herbivore inputs, however, did not significantly alter microbial respiration or immobilization, suggest- ing that effects of herbivore inputs on soil processes will be detected only at moderate to high herbivory/ input levels. These results suggest that subtle changes in frass and greenfall quality may not affect soil nutrient cycling. In contrast, environmental change induced increases in insect population size or frass and greenfall inputs to the soil may substantially impact nutrient cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.