Abstract

Soil C and N dynamics were evaluated in five eucalypt plantations within a precipitation gradient (500–2,000 mm) in Portugal. Soil physical and chemical properties, total and labile (particulate organic matter, hydrolyzable, hot water soluble and microbial) soil C and N pools, and C and N mineralization were measured to characterize the C and N dynamics and their controlling factors within this gradient. Contents of total and labile soil organic C and N were positively correlated with the mean annual precipitation. A similar relationship was observed for net N mineralization (anaerobic and long-term aerobic incubation), gross N mineralization (15N isotope dilution technique) and C mineralization. In contrast, rates of C and N mineralization (per unit of C and N) were higher in the driest sites due to their higher proportion of particulate organic matter C. Net and gross N mineralization were strongly correlated and showed similar controlling factors (mean annual precipitation, total and labile C and N and extractable P contents), suggesting that net N mineralization during long-term aerobic incubation reflects gross N transformations. Although, gross NO3–N production and gross NO3–N immobilization were observed in all sites, net nitrification in the drier sites was not observed in the first weeks of the study. Our results suggest that, under Mediterranean conditions, mean annual precipitation is the major factor determining the C and N dynamics in soils with Eucalyptus plantations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call