Abstract

Soil burial degradation was confirmed to be an efficient waste disposal method for the biodegradable materials with short service life, such as starch/poly (lactic acid) (PLA) composite. The biodegradation behavior about chemical and thermal properties of starch/PLA composite was analyzed by using X-ray photoelectron spectroscopy (XPS), infrared microscopy (IRM), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). XPS and IRM results indicated that the biodegradation of PLA occurred at the ester groups in PLA chains. XPS demonstrated the cleavage of CO linkages between glucose rings in starch. DSC and TGA results showed that the starch/PLA composite degraded faster than the pure PLA. During the soil burial degradation, the glass transition temperature of starch/PLA composite exhibited an obviously decrease while it had a slight variation for PLA. The thermal stability of starch/PLA composite shifted towards to that of PLA when they were subjected to soil burial for the same time. It is established that the starch can accelerate the degradation of PLA-based materials, which will enlarge the markets of biodegradable PLA materials used for short service life products.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.