Abstract

Magnaporthiopsis maydis is the causal agent of severe maize late wilt disease. Disease outbreak occurs at the maize flowering and fruit development stage, leading to the plugging of the plant’s water vascular system, resulting in dehydration and collapse of the infected host plant. The pathogen is borne by alternative hosts, infected seeds, soil, and plant residues and gradually spreads to new areas and new countries. However, no soil assay is available today that can detect M. maydis infestation and study its prevalence. We recently developed a molecular quantitative Real-Time PCR (qPCR) method enabling the detection of the M. maydis DNA in plant tissues. Despite the technique’s high sensitivity, the direct examination of soil samples can be inconsistent. To face this challenge, the current work demonstrates the use of a soil bioassay involving the cultivation of a hyper-susceptible maize genotype (Megaton cultivar, Hazera Seeds Ltd., Berurim MP Shikmim, Israel) on inspected soils. The use of Megaton cv. may facilitate pathogen establishment and spread inside the plant’s tissues, and ease the isolation and enrichment of the pathogen from the soil. Indeed, this cultivar suffers from severe dehydration sudden death when grown in an infested field. The qPCR method was able to accurately and consistently identify and quantify the pathogen’s DNA in an in vitro seed assay after seven days, and in growth-chamber potted plants at as early as three weeks. These results now enable the use of this highly susceptible testing plant to validate the presence of the maize late wilt pathogen in infested soils and to evaluate the degree of its prevalence.

Highlights

  • The causal agent of the maize late wilt disease is the soil- and seed-borne pathogen Magnaporthiopsis maydis [1]

  • These results enable the use of this highly susceptible testing plant to validate the presence of the maize late wilt pathogen in infested soils and to evaluate the degree of its prevalence

  • In thisto procedure each cultivar was tested over three seasons in order to order provide ainspection, trustworthy recommendation to farmers as togrowth whether to grow a specific maize provide a trustworthy recommendation to farmers as to whether to grow a specific maize cultivar on cultivar on M. maydis-infested soil

Read more

Summary

Introduction

The causal agent of the maize late wilt disease is the soil- and seed-borne pathogen Magnaporthiopsis maydis (former names—Harpophora maydis and Cephalosporium maydis) [1]. The most prominent disease symptoms appear months later [4,5] During this time, the pathogen gradually spreads upwards inside the host plant’s water vascular system without any visible symptoms. At the age of 50–60 days (depending on the maize cultivar susceptibility degree and environmental growth conditions, especially the watering regime) [6,7], the plant’s lower parts (mainly the leaves) begin to lose their green color. This begins a relatively rapid dehydration process that peaks 10–20 days later, resulting in the plant’s death [8]. The disease is considered to be the predominant devastating maize disease in Egypt and Israel, and a serious threat to other areas, including India [9], Hungary [10], Romania [11], Spain and Portugal [12], and Nepal [13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call