Abstract

The EU’s Common Agricultural Policy (CAP 2014–2020) on soil management points to the combination of sustainable food production with environmental protection, reduction of CO2 emissions, and safeguarding of soil biodiversity. In this study, three farms (in the Emilia-Romagna region), managed with both conventional and conservation practices (the last ones with and without sub-irrigation systems), were monitored from 2014 to 2017 to highlight the impact of different crops and soil managements on soil arthropods, in terms of abundance, composition, and soil biological quality (applying QBS-ar index). To do this, linear mixed models were performed, whereas arthropods assemblages were studied through PERMANOVA and SIMPER analysis. Soil communities varied among farms, although most differences were found among crops depending on management practices. Nonetheless, conservation systems and a wider reduction in anthropogenic practices provided better conditions for soil fauna, enhancing QBS-ar. Moreover, arthropod groups responded to soil practices differently, highlighting their sensitivity to agricultural management. Community assemblages in corn and wheat differed between managements, mainly due to Acari and Collembola, respectively. In conservation management, wheat showed the overall greatest abundance of arthropods, owing to the great number of Acari, Collembola, and Hymenoptera, while the number of arthropod groups were generally higher in crop residues of forage.

Highlights

  • Soil provides the basics for human livelihood and well-being, including food supply, freshwater and many others ecosystem services, in addition to biodiversity [1]

  • This paper reports the results of this study, which aimed to evaluate how different crops and soil management practices affect soil arthropod communities, in terms of both abundance and composition, as well as soil biological quality using QBS-ar, index applied on soil arthropod community [39]

  • Considering both factors, crop type seemed to have a greater effect on the arthropod community, the conservation system generally provides better conditions for soil fauna, often interacting with crop

Read more

Summary

Introduction

Soil provides the basics for human livelihood and well-being, including food supply, freshwater and many others ecosystem services, in addition to biodiversity [1]. Biodiversity plays a crucial role in ecosystem functioning and services [2]; many authors have highlighted the negative effects of conventional management on soil biodiversity multifunctionality [3]. Practices such as tillage, overfertilization, monoculture, and pesticide application often give rise to increased soil erosion, decay of organic matter content, salinization, and compaction, which may lead to a reduction in crop productivity and soil biodiversity, and subsequent socioeconomic losses [3,4]. Soil fauna plays an important role in maintaining soil quality and health, as well as providing ecosystem services [6] through processes such as organic matter translocation, fragmentation and decomposition, nutrient cycling, soil structure formation and, water regulation [7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call