Abstract

Anthropogenic drainage causes loss of natural character in herbaceous wetlands due to increased soil oxygen penetration. We related vegetation gradients in a New Zealand polje fen to long-term effects of drains by using hydrological, edaphic and vegetation data, and a before-after-control-impact (BACI) design to test responses to experimental drain closure. Soil profiles and continuous water level records revealed a site subject to frequent disturbance by intense but brief floods, followed by long drying periods during which areas close to drains experienced lower water tables and more variable water levels. Classification of vegetation data identified 12 groups along a moisture gradient, from dry areas dominated by pastoral alien species, to wet communities dominated by native wetland sedges. Lower total species diversity and native representation in pastoral communities were related to the high proportion of alien competitor and competitor-disturbance species, compared with the stress tolerator-dominated flora of other groups. Species–environment relationships revealed highly significant correlations with soil water content and aeration as measured by redox potential (EH) and steel rod oxidation depth, as well as soil nutrient content and bulk density. Comparison of root anatomy confirmed greater development of flood-tolerant traits in native species than in pastoral aliens, and vegetation N:P ratios indicated that most communities were probably nitrogen-limited. Flooding rapidly re-established wetland hydrology in dried sites in the impact area, and lowered EH and soil oxidation depth, but had no effect on N and P availability. Presence and cover of pastoral alien species decreased in these areas. This study supports the use of hydrological manipulation as a tool for reducing soil oxidation and thus the impact of alien plant species at restoration sites with minimal intervention, but suggests the need for detailed information on species flooding tolerances and hydrological preferences to underpin this approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.