Abstract

In this issue of Blood Cancer Discovery, Stoddart and colleagues describe cooperative effects of exposing both the bone marrow microenvironment of recipient mice and donor hematopoietic stem and progenitor cells (HSPC) to an alkylating agent in a genetically accurate model of therapy-induced myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) characterized by chromosome 5q deletions. The authors further implicate senescence of alkylator-treated mesenchymal stem cells (MSC) as contributing to the microenvironmental damage and subsequent therapy-induced myeloid neoplasms (tMN). Loss of Trp53 function and somatic mutations in other DNA damage response (DDR) genes were associated with overt AML in this model. Together, these studies shed new light on the complex pathogenesis of tMN and establish a robust model for biologic and preclinical investigation. See related article by Stoddart et al., p. 32.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.