Abstract
In certain areas of the Everglades Agricultural Area, plant and ratoon sugarcane (Saccharum L.) yields are increased by application of Si from calcium silicate slag. The greatest yield responses are obtained in the plant crop the first year after application of slag and when plant uptake of Si is increased. Magnesium deficiencies have been reported after slag application. The objective of this study was to quantify interactions of soil and leaf nutrients on sugarcane grown on a Terra Ceia muck (Euic, hyperthermic Typic Medisaprist) that had previously received calcium silicate slag. Slag was applied at five rates, and yields were evaluated from plant, first-ratoon, and second-ratoon (stubble) crops at two locations. Soil and leaf from each crop were sampled for nutrient analysis and the results were used to interpret the yield data. Although slag increased cane yield by as much as 39% and sugar yield by 50%, for each 100 mg L−1 drop in extractable soil Mg, cane yields declined by 5.3 Mg ha−1 and sugar yields by 0.9 Mg ha−1. At leaf Si concentrations exceeding 10 g kg−1, optimum cane and sugar yields were observed, while leaf Mg concentrations approached critical leaf concentrations below 1.5 g kg−1. Estimates of total leaf nutrient uptake during each crop indicated that uptake of Mg did not meet nutrient demands at high biomass production. Nutrient antagonism between Si and Mg is suggested. Low soil Mg may contribute to the marked crop responses to slag and for the decline in stubble production. Application of a magnesium fertilizer may be necessary to maintain high nutrient availability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.