Abstract

Groundwater and soil pollution caused by (PAHs) spills, mostly from the oil industry and petrol stations in urban areas, represent a major environmental concern worldwide. However, infiltration into groundwater is decreasing due to the natural attenuation processes of PAHs in the vadose zone, which protect invaluable groundwater resources against contamination. This study was conducted to evaluate the effect of improper management of the petroleum industry on the groundwater and soil surrounding the petrol station and an oil refinery unit and, furthermore, to prepare the polluted risk intensity (PRI) map. Fifty-one soil samples and twenty-five water samples were analyzed for Light Non-aqueous Phase Liquid (LNAPLs), and one soil sample for Dense Non-Aqueous Phase Liquid (DNAPLs); furthermore, six soil samples analyzed for Tetraethyl Lead (TEL) analysis. The results showed that seventeen wells were polluted with LNAPLs and the soils were highly contaminated with different DNAPLs components and mainly was in the form of Polycyclic Aromatic Hydrocarbons (PAHs). Seven factors introduced to the GIS platform to produce PRI map, which is the distance to source, depth to water table, slope, lineaments, lithology, soil, and recharge rate. The final map revealed that the eastern and western parts of the study area are at a very high-risk level, whereas the center is at a very low to low-risk level.

Highlights

  • The crucial role groundwater plays as a decentralized source of drinking water and other human utilities for thousands of rural and urban families cannot be overstated

  • The results show that four components of light nonaqueous phase liquids (LNAPLs) have been acting as contaminants in this site and the area surrounding it, see Table 9

  • The six soil samples of the lead investigation show that the area around the Tetraethyl Lead (TEL) tank is at a high level; it is below the World Health Organization (WHO) standard, which is 10 ppm (0.01 ppm in the water, see Table 12), but the presence of this tank might increase the risk of soil and groundwater pollution in the area

Read more

Summary

Introduction

The crucial role groundwater plays as a decentralized source of drinking water and other human utilities for thousands of rural and urban families cannot be overstated. Groundwater is less susceptible to contamination and pollution when compared to surface water. The natural impurities in rainwater, which recharge groundwater systems, are removed during infiltration through soil strata. Polynuclear aromatic hydrocarbons (PAHs) are a group of pollutants that are present at high concentrations in the groundwater and soils of many hydrocarbon industries areas. PAHs are a group of DNAPL compounds that form during a spill or incomplete burning of oil and coal, garbage, or other organic substances; agricultural runoff; etc. Groundwater from aquifers is an important drinking water resource, which is, vulnerable to contamination. In the previous century, human activities have a significant impact on

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call