Abstract

The rhizospheres of five different potato cultivars (including a genetically modified cultivar) obtained from a loamy sand soil and two from a sandy peat soil, next to corresponding bulk soils, were studied with respect to their community structures and potential function. For the former analyses, we performed bacterial 16S ribosomal RNA gene-based PCR denaturing gradient gel electrophoresis (PCR-DGGE) on the basis of soil DNA; for the latter, we extracted microbial communities and subjected these to analyses in phenotype arrays (PM1, PM2, and PM4, Biolog), with a focus on the use of different carbon, sulfur and phosphorus sources. In addition, we performed bacterial PCR-DGGE on selected wells to assess the structures of these substrate-responsive communities. Effects of soil type, the rhizosphere, and cultivar on the microbial community structures were clearly observed. Soil type was the most determinative parameter shaping the functional communities, whereas the rhizosphere and cultivar type also exerted an influence. However, no genetically modified plant effect was observed. The effects were imminent based on general community analysis and also single-compound analysis. Utilization of some of the carbon and sulfur sources was specific per cultivar, and different microbial communities were found as defined by cultivar. Thus, both soil and cultivar type shaped the potato root-associated bacterial communities that were responsive to some of the substrates in phenotype arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.