Abstract
Foliage temperatures of cotton obtained by means of infrared thermometry, along with air wet and dry bulb temperature measurements, were used to investigate certain relationships existing between the water contents of soil and air and the ability of the crop to maintain transpiration at the potential rate. It was found that as soil water content is progressively depleted following an irrigation, departure from potential transpiration begins to occur at smaller and smaller values of air vapor pressure deficit in a regularly predictable fashion. It was also demonstrated that the plant water potential of cotton transpiring at the potential rate is a function of the air vapor pressure deficit and that the difference between this base value and the tension that develops under nonpotential conditions is a unique function of a newly developed plant water stress index. Finally, an example of the application of this foliage temperature‐based index to evaluating the effects of an irrigation event is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.