Abstract

Soil is a critical part of successful agriculture and is the source of the nutrients that we use to grow crops. There are different types of soil and there are different properties of each soil. On these different properties, several types of crops grow. We need to know the properties and characteristics of various soil types to understand which crops sow in certain soil types. Machine Learning allows the user to feed a computer algorithm on an immense amount of data and have the computer analyze, make data-driven recommendations and decisions based to analyze the input data. Machine Learning techniques are used to model this process. Machine Learning has come into the picture with the big data technologies and high-performance computing that create new opportunities for data-intensive science in the multi-disciplinary agri-technology domain. In this paper, we have proposed a model that can find whether the soil is fertile or not, Sowing crop seed on fertile soil, and at last predicting the crop yield on different soil features. According to prediction, it can be suggested and recommended which crops grow more. Various Machine Learning algorithms such as Support Vector Machine (SVM), Random Forest, Naive Bayes, Linear Regression, Multilayer perceptron (MLP), and ANN are used for soil classification and crop yield. Test results show that the proposed ANN method follows a deep learning architecture which means it has several layers for input and output are connected to achieve better accuracy than numerous existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.