Abstract

This study aimed to examine the potential of soil amendment-assisted phytoremediation using ryegrass in reclaiming abandoned gold mine soil in southwestern Ghana, with a specific focus on the soil contamination hazards associated with metals and metalloids. A pot experiment lasting 60 days was carried out to assess the efficacy of soil amendments, such as compost, iron oxide, and poultry manure, in mitigating environmental hazards. Three soil contamination indices (soil contamination = CF, enrichment factor = ER, and pollution load index = PLI) were used to calculate the extent of soil contamination, enrichment, and pollution of the sites with Co, Hg, Ni, Mo, Se, Sb, and Pb. The findings show that Hg made the greatest contribution (with a maximum soil CF of 18.0) to the overall PLI, with a maximum value of 74.4. The sites were averagely and consequently enriched with toxic elements in the decreasing order: Ni (ER = 33.3) > Mo (20.5) > Sb (14.1) > Pb (11.0) > Hg (7.9) > Se (2.1). The bioaccumulation factor (BCF > 1) suggests that ryegrass has the ability to phytostabilize Co, Hg, Mo, and Ni. This means that the plant may store these elements in its roots, potentially decreasing their negative effects on the environment and human health. Ultimately, the addition of combined manure with iron oxides might have augmented the sequestration of these metals in the root. The elements may have accumulated through sorption on manure or Fe surfaces, dissolution from watering the plants in the pot, or mineralization of organic manure. Thus, ryegrass has shown potential for phytostabilisation of Co, Hg, Mo, and Ni when assisted with a combination of manure and iron oxides; and can consequently mitigate the environmental and human health impacts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.