Abstract
Dicyandiamide (DCD) is a nitrification inhibitor of variable efficacy. In soils, DCD biodegradation rate is known to be a function of temperature; however, microbial activity can also be affected by soil aeration and substrate availability. Studies determining the effects of soil aeration on DCD degradation are few. We tested the null hypothesis that the rate of degradation of DCD in soil would be the same under aerobic and anaerobic conditions. Soils from two sites with different organic matter concentrations but the same parent material were sampled to the same depth, sieved, and repacked into tubes (‘soil cores’). These were saturated with a DCD solution (30 µg mL–1) and placed under controlled aeration conditions by imposing five levels of matric potential (0, –1, –3, –6, and –10 kPa) at a constant temperature (22°C). The relative O2 diffusivity (O2 diffusion coefficient in soil/O2 diffusion coefficient in air, Dp/Do) was measured, along with periodic destructive sampling of soil cores over 40 days, to assess the DCD concentrations. Fitting first-order exponential functions to plots of soil DCD concentration v. time showed that the DCD degradation rate was greater (P < 0.05) when the soil was aerobic (Dp/Do ≥ 0.01). Consequently, the null hypothesis was rejected. These results show that soil aeration determines the degradation rate of DCD.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.