Abstract

pH is known to be a primary regulator of nutrient cycling in soil. Increasing soil acidity in agricultural systems has the potential to slow down N cycling and reduce N losses from leaching thereby enhancing sustainability and reducing pollution. We conducted a field experiment to investigate the impact of acidity on N leaching in arable and grassland agricultural systems. The results showed that nitrate (NO 3 −) concentrations in soil water were greater under arable than under grassland. Soil acidification significantly lowered NO 3 − concentrations in soil water over winter and spring under grassland, whilst in cereal plots a similar effect was only observed in spring. Our results suggest that soil acidification decreased nitrification causing an accumulation of NH 4 + which was not subject to leaching. Dissolved organic nitrogen (DON) concentrations in soil water were significantly greater under arable than grassland. Soil acidification lowered concentrations of DON in soil water, usually to a greater extent in grassland than in arable plots. It was concluded that it may be possible to use careful soil pH management as a tool to control NO 3 − leaching without compromising the quality of drainage water, and that this may be more effective on grassland than on arable crops.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.