Abstract

Coastal orchards, with greater humidity and precipitation, are favorable for fruit production, as well as mildew fungi development, thus becoming hot spots of Cu concentrations in soils due to the use of copper-based fungicides. However, little is known on the variation tendencies of Cu availability and mobility from these soils. This study aims to investigate the accumulation, spatial-temporal distribution, and chemical fractions of soil Cu in one of the largest coastal apple-producing area with over 40-year intensive cultivation in China. A total of 104 orchard and 31 farmland topsoil samples were collected from Jiaodong Peninsula, Shandong Province. The total Cu concentration (T-Cu) and major element components (MnO, TiO2, SiO2, Fe2O3, and Al2O3) in the soil were determined by X-ray fluorescence spectroscopy. Available Cu concentration (A-Cu) was extracted with HCl or DTPA. Chemical fractionations of Cu were determined via sequential extraction method. The variation tendencies of T-Cu, A-Cu, Cu available ratio (AR), and chemical fractions with planting duration in the orchards were explored while a cokriging method was selected to predict their spatial distributions. Moreover, Pearson's correlation and multiple linear stepwise regressions were constructed to distinguish the vital factors in controlling Cu availability and mobility from these soils. The results showed that long-term application of Cu-containing fungicides had increased Cu concentrations in orchard soils (85.77 mg kg-1) 3.5 times higher than the background value (24.0 mg kg-1) of local agricultural soils, in which 23.8% existed in the available form. Cu in the weak acid-soluble fraction (F1, 5.0 ± 3.5 %), reducible fraction (F2, 24.7 ± 6.6%), and oxidizable fraction (F3, 18.5 ± 7.8%) in orchard soils increased significantly with increasing planting durations whereas the residual fraction (F4, 51.7 ± 15.4%) exhibited a reverse trend. Total content, available content, and chemical fractions of Cu showed strong spatial heterogeneity. The availability and mobility of Cu in orchard soils were mainly controlled by total Cu content, pH, and soil organic carbon. Coastal orchards under warm and humid climate condition in China exhibited higher Cu input, along with acidification and rapid organic carbon turnover in the soils, eventually leading to large accumulation and high mobility of Cu in the soils.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.