Abstract
Developments in automotive (particularly hybrid-electric vehicles), aerospace, and energy production industries have led to expanding research interest in integrated circuit (IC) design toward high-temperature applications. A high-voltage, high-temperature silicon-on-insulator (SOI) process allows for circuit design to expand into these extreme environment applications. Nearly all electronic devices require a reliable supply voltage capable of operating under various supply voltages and load currents. These supply voltages and load currents can be either DC or time-varying signals. In this work, a stable supply voltage for embedded circuits is generated on chip via a voltage regulator producing a stable 5-V output voltage. Although applications of this voltage regulator are not limited to gate driver circuits, this regulator has been developed to meet the demands of a gate driver IC. The voltage regulator must be able to provide reliable output voltage over an input range from 10 V to 30 V, a temperature range of −25°C to 200°C, and output loads from 0 mA to 200 mA. Additionally, low power stand-by operation is provided to help reduce heat generation resulting in lower operating junction temperature. The designed voltage regulator has been successfully tested from −50°C to 200°C while demonstrating an output voltage variation of less than 10 mV under the full range of input voltage. Additionally, line regulation tests from 10 V to 30 V show a 12-ppm/V supply sensitivity. Full temperature and input voltage range tests reveal that the no-load supply current draw is within 17 mA while still providing in excess of 200-mA load current upon demand. Modifications to the existing design or off-chip biasing can widen the range of attainable output voltages and drive capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.