Abstract

The growing movement to connect literally everything to the internet (internet of things or IoT) through ultra-low-power embedded microprocessors poses a critical challenge for information security. Gate-level tracking of information flows has been proposed to guarantee information flow security in computer systems. However, such solutions rely on non-commodity, secure-by-design processors. In this work, we observe that the need for secure-by-design processors arises because previous works on gate-level information flow tracking assume no knowledge of the application running in a system. Since IoT systems typically run a single application over and over for the lifetime of the system, we see a unique opportunity to provide application-specific gate-level information flow security for IoT systems. We develop a gate-level symbolic analysis framework that uses knowledge of the application running in a system to efficiently identify all possible information flow security vulnerabilities for the system. We leverage this information to provide security guarantees on commodity processors. We also show that security vulnerabilities identified by our analysis framework can be eliminated through software modifications at 15% energy overhead, on average, obviating the need for secure-by-design hardware. Our framework also allows us to identify and eliminate only the vulnerabilities that an application is prone to, reducing the cost of information flow security by 3.3 x compared to a software-based approach that assumes no application knowledge.CCS CONCEPTS• Computer systems organization→Special purpose systems; Embedded systems;

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.