Abstract

TM (transactional memory) is a concurrency control paradigm that provides atomic and isolated execution for regions of code. TM is considered by many researchers to be one of the most promising solutions to address the problem of programming multicore processors. Its most appealing feature is that most programmers only need to reason locally about shared data accesses, mark the code region to be executed transactionally, and let the underlying system ensure the correct concurrent execution. This model promises to provide the scalability of fine-grain locking, while avoiding common pitfalls of lock composition such as deadlock. In this article we explore the performance of a highly optimized STM and observe that the overall performance of TM is significantly worse at low levels of parallelism, which is likely to limit the adoption of this programming paradigm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call