Abstract
Software rejuvenation is modeled in a client–server system, which provides resources to priority classes of users. To assure availability, resource reservation policies are adopted for the higher priority classes. In addition software rejuvenation is proposed to optimize resource availability. The system is modeled by a cyclic nonhomogeneous Markov chain to capture the variation of the arrival and service rates during a day period. An optimization problem is solved based on a similar previous work and given the optimal resource reservation policy obtained by its solution, rejuvenation is performed and the optimal rejuvenation policy is determined. As a measure of resource availability the blocking probability of each priority class is used. Performability indicators expressing the total cost are also derived, with respect to the optimal resource reservation and optimal rejuvenation policies, to examine whether rejuvenation benefits the system in terms of cost. To derive the blocking probabilities, the limiting probability distribution is computed using explicit generalized approximate inverse preconditioning for solving efficiently sparse linear systems of algebraic equations. Copyright © 2012 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Stochastic Models in Business and Industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.