Abstract

The software quality is a comprehensive fuzzy evaluation problem which might be divided into different layers based on its attributes. An unascertained-SVR measure for evaluating and forecasting the quality of software is established on the basis of analysing the factors affecting the quality risks of software system by applying the unascertained measure theory. Therefore, a new system is found to evaluate software quality based on the knowledge of software project. Then, the quality of software is evaluated and predicted by introducing a new mathematical model - Support Vector Regression SVR model. SVR is one of the best events on dealing with small samples, avoiding the defects of neural network that is easy to fall into local minimum and lower accuracy rate. Finally, the practical application shows that the method overcomes the defect that the variable set by experts, then makes the evaluation results objective and scientific.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.