Abstract

Stream programming model has been productively applied to a number of important application domains. Software pipelining is an important code scheduling technique for stream programs. However, the multicore evolution has presented a new dimension of challenges: that is how to orchestrate the best software pipelining schedule in the face of resource constrained architectures (e.g., number of cores, available memory, and bandwidth)? In this paper, we proposed a new solution methodology to address the problem above. Our main contributions include the following. A unified Integer Linear Programming (ILP) formulation has been proposed that combines the requirement of both rate-optimal software pipelining and the minimization of intercore communication overhead. Next, an extended formulation has been proposed to formulate the schedule under memory size constrained systems. It orchestrates the rate-optimal software pipelining execution for stream programs with strict memory, processor cores, and communication constraints. A solution testbed has been implemented for the proposed problem formulations. This has been realized by extending the Brook programming environment with our software pipelining support-named DFBrook. An experimental study has been conducted to verify the effectiveness of the proposed solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.