Abstract

In the NIST Post-Quantum Cryptography (PQC) standardization process, among 17 candidates for code-based public-key encryption (PKE), signature or key encapsulation mechanism (KEM), only three are in the 4th evaluation round. The remaining code-based candidates are Classic McEliece [CCUGLMMNPP+20], BIKE [ABBBBDGGGM+17] and HQC [MABBBBDDGL+20]. Cryptographic primitives from coding theory are some of the most promising candidates and their security is based on the well-known problems of post-quantum cryptography. In this paper, we present an efficient implementation of a secure KEM based on binary quasi-dyadic generalized Srivastava (QD-GS) codes. With QD-GS codes defined for an extension degree $$m>2$$ , this key establishment scheme is protected against the attacks of Barelli-Couvreur Bardet et al.. We also provide parameters that are secure against folding technique and FOPT attacks. Finally, we compare the performance of our implementation in runtime with the NIST finalists based on codes for the 4th round.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call