Abstract

The software safety of a nuclear digital protection system is critical for the safety of nuclear power plants as any software defect may result in severe damage. In order to ensure the safety and reliability of safety-critical digital system products and their applications, software hazard analysis is required to be performed during the lifecycle of software development. The dynamic software hazard modeling and analysis method based on Colored Petri Net is proposed and applied to the safety-critical control software of the nuclear digital protection system in this paper. The analysis results show that the proposed method can explain the complex interactions between software and hardware and identify the potential common cause failure in software properly and effectively. Moreover, the method can find the dominant software induced hazard to safety control actions, which aids in increasing software quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call