Abstract

Electrochemical characteristics such as open-circuit voltage and ionic conductivity of electrochemical energy storage materials are easily affected, typically negatively, by mobile ion/vacancy ordering. Ordered phases can be identified based on the lattice gas model and electrostatic energy screening. However, the evaluation of long-range electrostatic energy is not straightforward because of the conditional convergence. The Ewald method decomposes the electrostatic energy into a real space part and a reciprocal space part, achieving a fast convergence in each. Due to its high computational efficiency, Ewald-based techniques are widely used in analyzing characteristics of electrochemical energy storage materials. In this work, we present software not only integrating Ewald techniques for two-dimensional and three-dimensional periodic systems but also combining the Ewald method with the lattice matching algorithm and bond valence. It is aimed to become a useful tool for screening stable structures and interfaces and identifying the ionic transport channels of cation conductors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.