Abstract

Program “Breadth” was written for analyzing diffraction-line broadening. The physically broadened line profiles are required as input. The results are calculated according to three ”simplified” integral-breadth methods: Cauchy-Cauchy, Cauchy-Gauss, and Gauss-Gauss. The program output includes volume-weighted coherent domain size and a maximum strain. Furthermore, the root-mean-square strain and both surface-weighted and volume-weighted domain sizes are calculated according to the “double-Voigt” method. This method also allows the accurate determination of both surface-weighted and volume-weighted domain-size distribution functions for specimens showing a dominant size-broadening effect, which gives more detailed information than the mere average value of coherent-domain size. Some examples for ball-milled W (shows simultaneous size-strain broadening) and NiFe2O4 (shows pronounced pure-size broadening) are included.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.