Abstract

In the life cycle of software product development, the software effort estimation (SEE) has always been a critical activity. The researchers have proposed numerous estimation methods since the inception of software engineering as a research area. The diversity of estimation approaches is very high and increasing, but it has been interpreted that no single technique performs consistently for each project and environment. Multi-criteria decision-making (MCDM) approach generates more credible estimates, which is subjected to expert’s experience. In this paper, a hybrid model has been developed to combine MCDM (for handling uncertainty) and machine learning algorithm (for handling imprecision) approach to predict the effort more accurately. Fuzzy analytic hierarchy process (FAHP) has been used effectively for feature ranking. Ranks generated from FAHP have been integrated into weighted kernel least square support vector machine for effort estimation. The model developed has been empirically validated on data repositories available for SEE. The combination of weights generated by FAHP and the radial basis function (RBF) kernel has resulted in more accurate effort estimates in comparison with bee colony optimisation and basic RBF kernel-based model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.