Abstract

Most existing underwater networks target deep and long range oceanic environments, which has led to the design of power hungry and expensive underwater communication hardware. Because of prohibitive monetary and energy cost of currently over-engineered communication hardware, dense deployments of shallow water sensor networks remain an elusive goal. To enable dense shallow water networks, we propose a network architecture that builds on the success of terrestrial sensor motes and that relies on the coupling of software modems and widely available speakers and microphones in sensor motes to establish acoustic communication links. In this paper, we analytically and empirically explore the potential of this acoustic communication system for the underwater environment. Our experimental approach first profiles the hardware in water after waterproofing the components with elastic membranes. The medium profiling results expose the favorable frequencies of operation for the hardware, enabling us to design a software FSK modem. Subsequently, our experiments evaluate the data transfer capability of the underwater channel with 8-frequency FSK software modems. The experiments within a 17 × 8 m controlled underwater environment yield an error-free channel capacity of 24 bps, and they also demonstrate that the system supports date rates between 6 and 48 bps with adaptive fidelity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.