Abstract

The appropriate design of a vehicular ad hoc network (VANET) has become a pivotal way to build an efficient smart transportation system, which enables various applications associated with traffic safety and highly-efficient transportation. VANETs are vulnerable to the threat of malicious nodes stemming from its dynamicity and infrastructure-less nature and causing performance degradation. Recently, software-defined networking (SDN) has provided a feasible way to manage VANETs dynamically. In this article, we propose a novel software-defined trust based VANET architecture (SD-TDQL) in which the centralized SDN controller is served as a learning agent to get the optimal communication link policy using a deep <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> -learning approach. The trust of each vehicle and the reverse delivery ratio are considered in a joint optimization problem, which is modeled as a Markov decision process with state space, action space, and reward function. Specifically, we use the expected transmission count ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$ETX$ </tex-math></inline-formula> ) as a metric to evaluate the quality of the communication link for the connected vehicles’ communication. Moreover, we design a trust model to avoid the bad influence of malicious vehicles. Simulation results prove that the proposed SD-TDQL framework enhances the link quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.