Abstract

In this paper, a general architecture for the implementation of software-defined optoelectronic systems is described. This concept harnesses the flexibility of software-defined hardware to implement optoelectronic systems which can be configured to adapt to multiple high speed optical engineering applications. As an application example, a software-defined optical interferometer using a commercial software-defined radio platform is built. The system is tested by performing high speed optical detection of laser-induced photoacoustic signals in a concentrated dye solution. Using software modifications only, conventional single carrier and also multicarrier heterodyne techniques with space and frequency diversity are performed. The latter technique shows a noticeable performance improvement in single-shot interferometric measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.