Abstract
The rapid growth of Cloud Computing has brought with it major new challenges in the automated manageability, dynamic network reconfiguration, provisioning, scalability and flexibility of virtual networks. OpenFlow-enabled Software-Defined Networking (SDN) alleviates these key challenges through the abstraction of lower level functionality that removes the complexities of the underlying hardware by separating the data and control planes. SDN has an efficient, dynamic, automated network management, higher availability and application provisioning through programmable interfaces which are very critical for flexible and scalable cloud-based services. In this study, the author explores broadly useful open technologies and methodologies for applying an OpenFlow-enabled SDN to scalable cloud-based services and a variety of diverse applications. The approach in this paper introduces new research challenges in the design and implementation of advanced techniques for bringing an SDN-enabled components and big data applications into a cloud environment in a dynamic setting. Some of these challenges become pressing concerns to cloud providers when managing virtual networks and data centers, while others complicate the development and deployment of cloud-hosted applications from the perspective of developers and end users. However, the growing demand for manageable, scalable and flexible clouds necessitates that effective solutions to these challenges be found. Hence, through real-world research validation use cases, this paper aims at exploring useful mechanisms for the role and potential of an OpenFlow-enabled SDN and its direct benefit for scalable cloud-based services. Finally, it demonstrates the impact of an OpenFlow-enabled SDN that fully embraces the opportunities and challenges of cloud infrastructures to improve the system performance of Hadoop-based big data applications by utilizing the network control capabilities of an OpenFlow to solve network congestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Grid and High Performance Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.