Abstract

Software-defined networking (SDN) and network function virtualization (NFV) are a promising system architecture and control mechanism for future networks. Although some works have been done on wireless SDN and NFV, recent advancements in device-to-device (D2D) communications are largely ignored in this novel framework. In this paper, we study the integration of D2D communication in the framework of SDN and NFV. An inherent challenge in supporting software-defined D2D is the imperfectness of network state information, including channel state information (CSI) and queuing state information, in virtual wireless (QSI) networks. To address this challenge, we formulate the resource sharing problem in this framework as a discrete stochastic optimization problem and develop discrete stochastic approximation algorithms to solve this problem. Such algorithms can reduce the computational complexity compared with exhaustive search while achieving satisfactory performance. Both the static wireless channel and time-varying channels are considered. Extensive simulations show that users can benefit from both wireless network virtualization and software-defined D2D communications, and our proposed scheme can achieve considerable performance gains in both system throughput and user utility under practical network settings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.