Abstract

Software development projects inevitably accumulate defects throughout the development process. Due to the high cost that defects can incur, careful consideration is crucial when predicting which sections of code are likely to contain defects. Classification algorithms used in machine learning can be used to create classifiers which can be used to predict defects. While traditional classification algorithms optimize for accuracy, cost-sensitive classification methods attempt to make predictions which incur the lowest classification cost. In this paper we propose a cost-sensitive classification technique called CSForest which is an ensemble of decision trees. We also propose a cost-sensitive voting technique called CSVoting in order to take advantage of the set of decision trees in minimizing the classification cost. We then investigate a potential solution to class imbalance within our decision forest algorithm. We empirically evaluate the proposed techniques comparing them with six (6) classifier algorithms on six (6) publicly available clean datasets that are commonly used in the research on software defect prediction. Our initial experimental results indicate a clear superiority of the proposed techniques over the existing ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.