Abstract

Software industries strive for software quality improvement by consistent bug prediction, bug removal and prediction of fault-prone module. This area has attracted researchers due to its significant involvement in software industries. Various techniques have been presented for software defect prediction. Recent researches have recommended data-mining using machine learning as an important paradigm for software bug prediction. state-of-art software defect prediction task suffer from various issues such as classification accuracy. However, software defect datasets are imbalanced in nature and known fault prone due to its huge dimension. To address this issue, here we present a combined approach for software defect prediction and prediction of software bugs. Proposed approach delivers a concept of feature reduction and artificial intelligence where feature reduction is carried out by well-known principle component analysis (PCA) scheme which is further improved by incorporating maximum-likelihood estimation for error reduction in PCA data reconstruction. Finally, neural network based classification technique is applied which shows prediction results. A framework is formulated and implemented on NASA software dataset where four datasets i.e., KC1, PC3, PC4 and JM1 are considered for performance analysis using MATLAB simulation tool. An extensive experimental study is performed where confusion, precision, recall, classification accuracy etc. parameters are computed and compared with existing software defect prediction techniques. Experimental study shows that proposed approach can provide better performance for software defect prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.