Abstract

The High Efficiency Video Coding (HEVC) standard aims at providing ~50% better compression compared to its predecessor (H.264) at the cost of high computational complexity. To enable HEVC video encoding in real-time scenarios, special coding support for parallelization is provided in HEVC that can be exploited by many-core systems. In this work, we present a HEVC software architecture where a video frame is adaptively divided into independent video frame regions (i.e. so-called video tiles) which are processed concurrently on multiple cores. By balancing the workload of each video tile mapped to a particular core, the total power consumption of a system is reduced (through dynamically scaling the operating frequency) under a given frame-rate constraint. We also exploit user tolerance to further curtail the HEVC workload with insignificant video quality degradation. Experimental results illustrate that the proposed approach results in ~43% power savings on a many-core system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.