Abstract

Food delivery services have gained popularity since the emergence of online food delivery. Since the recent pandemic, the demand for service has increased tremendously. Due to several factors that affect how much time additional riders spend on the road; food delivery companies have no control over the location or timing of the delivery riders. There is a need to study and understand the food delivery riders' efficiency to estimate the service system's capacity. The study can ensure that the capacity is sufficient based on the number of orders, which usually depends on the number of potential customers within a territory and the time each rider takes to deliver the orders successfully. This study is an opportunity to focus on the efficiency of the riders since there is not much work at the operational level of the food delivery structure. This study takes up the opportunity to design a software agent simulation on the efficiency of riders' operations in food service due to the lack of simulation to predict this perspective, which could be extended to efficiency prediction. The results presented in this paper are based on the system design phase using the Tropos methodology. At movement in the simulation, the graph of the efficiency is calculated. Upon crossing the threshold, it is considered that the rider agents have achieved the efficiency rate required for decision-making. The simulation's primary operations depend on frontline remotely mobile workers like food delivery riders. It can benefit relevant organizations in decision-making during strategic capacity planning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call