Abstract

Surgical reconstruction of the posterior cruciate ligament (PCL) is recommended in acute injuries that result in severe tibial subluxation and instability. The surgical outcome level may be affected by the tibial fixation site. In response to a 110-N posterior tibial load, kinematics and in situ forces of anatomical soft-tissue graft fixation in single-bundle PCL reconstruction using an interference screw fixation are significantly closer to those in the intact knee than with extracortical fixation with two staples. Using a robotic/universal force moment sensor (UFS) testing system, we examined joint kinematics and in situ forces of porcine knees following single-bundle PCL reconstruction fixed at two different tibial fixation sites: anatomical interference screw and extracortical fixation. The site of the tibial graft fixation had significant effect on the resulting posterior displacement and in situ forces of the graft. Both PCL reconstruction techniques reduced the posterior tibial translation significantly. Proximal fixation techniques provided significantly less posterior tibial translation than extracortical fixation. Single-bundle PCL reconstruction with an interference screw showed higher in situ forces of the graft than the extracortical fixation. The kinematics and in situ forces of a single-bundle PCL reconstruction using an interference screw fixation technique are superior to the primary stability of an extracortical fixation with staples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.